

Exercises 3: Concentrated Solution and Phase Behavior

3.1: The upper part in the following diagram shows a plot of the free-energy of mixing as a function of the concentration for a given polymer-solvent system.

- Construct a phase diagram for the given polymer-solvent system from the curves of the free energy of mixing at different temperatures
- Does this polymer show a lower critical solution temperature (LCST) or an upper critical solution temperature (UCST) in the given solvent?

3.2: The following relationship can be obtained between the critical temperature T_c for phase separation and the degree of polymerization n (Flory-Krigbaum-Equation)

$$\frac{1}{T_c} = \frac{1}{\theta} \left[1 + \frac{1}{\Psi} \left(\frac{1}{\sqrt{n}} + \frac{1}{2n} \right) \right]$$

The following critical temperatures were obtained for polyisobutylene $[-\text{CH}_2 - \text{C}(\text{CH}_3)_2-]_n$, $M = 56 \text{ g/mol}$, in diisobutylketone:

$M \text{ [g.mol}^{-1}]$	22700	285000	6000000
$T_c \text{ [}^{\circ}\text{C}]$	18.2	45.9	56.2

Calculate Θ , ψ and χ at 298K for polyisobutylene in diisobutylketone.

Use:

$$\frac{1}{2} - \chi = \psi \left(1 - \frac{\Theta}{T} \right) \text{ to calculate } \chi$$

3.3:

(a) The Flory-Huggins theory may be extended to a binary mixture of different polymers, i.e., an A/B blend. The resulting free energy of mixing can be written as

$$\Delta G_m = kT \left\{ \left(\phi_A / N_A \right) \ln \phi_A + \left(\phi_B / N_B \right) \ln \phi_B + \chi \phi_A \phi_B \right\}$$

where N_A and N_B are the respective degrees of polymerization. Find the critical point (χ_c and ϕ_c) in terms of N_A and N_B . Show that your results reduce to the solution case when $N_B \rightarrow 1$.

Compare the solution and symmetric blend (i.e. $N_A = N_B$) results in the limit of infinite molecular weight; what is the crucial difference?

(b) If you have a blend of polystyrene and polybutadiene, at what critical temperature would you expect to find a homogeneously mixed system for all polymer fractions if the molecular weight of the PS is 10^5 g/mol and PB is 10^4 g/mol .

$M_{\text{mon}} \text{ (PS)} = 104 \text{ g/mol}$, $M_{\text{mon}} \text{ (PB)} = 52 \text{ g/mol}$.

As we discussed a way to calculate is to use the Hildebrand approach:

$$\chi = \frac{v_0}{k_B T} (\delta_1 - \delta_2)^2$$

For this system take: $v_0 = 100 \text{ \AA}^3$, $\delta_{\text{PS}} = 1.87 \times 10^4 \text{ J}^{1/2} \text{ m}^{-3/2}$, and $\delta_{\text{PB}} = 1.62 \times 10^4 \text{ J}^{1/2} \text{ m}^{-3/2}$